6th Annual State of Modeling and Simulation Briefing to Government and Industry

Alexandria, Virginia May 22, 1997

Hon. Philip E. Coyle
Director, Operational Test & Evaluation
(703) 697-3655

director@dote.osd.mil

CONFERENCE OBJECTIVES

- Common perspectives
- Exploit M&S potential
- Discuss applicability--two-way dialog
- Review supporting capabilities
- Gain insights to effective M&S
- Emphasize your role

WHY M&S?

- Gain understanding
- Learn early; significance of what is found in contractor testing
- Smooth transition between phases
- Achieve long-term savings
- Reduce cycle time
- Cost/performance analysis

WHY THE CONCERN?

- We don't use M&S as well as we could
- Cannot afford to build many different singleuse models
- Great potential for applicability from design and manufacturing to test and evaluation
- Need greater understanding

CRADLE TO GRAVE APPLICATION

- Combat development
- Engineering and manufacturing development
- Test and evaluation
- Training
- Sustainment

Modeling & Simulation

STRONG DOT&E SUPPORT FOR M&S

- My own experience
- Cuts across doctrine, training, leadership, organizations, material
- Critical to future success

M&S CONTRIBUTIONS

- Design
- Manufacture
- Subcomponent Testing
- **AOA**
- Development

- Operational Evaluation
- Test Planning
- Training
- Logistic Support
- JWCA

MOD/SIM CHARACTERISTICS

- Realistic
- "Physics" based
- Highly predictive

MYTHS

- Operational testers won't use M&S
- M&S is cheap
- Testing and M&S are opposite ends of a balance scale

TRUTH IS: M&S and testing are intertwined; when they are not, neither is effective

EXAMPLES

Predator (requirements refinement)

Sealift (design)

C-17 (design, TTPs)

Janus (test planning)

PREDATOR (REQUIREMENTS REFINEMENT)

Background and Motivation

"Presence" Key Performance Parameter (KPP)

"The baseline MAE UAV system must be capable of continuous (with on-station relief) 24 hour intelligence coverage of any target in the operating area."

- Continuous target area coverage never before attempted with Predator
 - have not demonstrated simultaneous control of multiple air vehicles
 - no typical operating range has been defined (CONOPS)

Methodology

Discrete-event simulation developed to predict target area presence

Extend™ simulation environment on Macintosh host

Conclusions/Recommendations

- Optimum target area presence is a function of many variables
 - 4 air vehicles per system
 - dual air vehicle control
 - no weather
 - short transit times
 - optimistic maintenance assumptions
 - highly sensitive to transit time (6 hr ingress time reduces best case presence to < 70 %)
 - maintenance assumptions (changing to serial maintenance reduced target coverage by 1-13%)
 - available air vehicles (from 4 to 3 will reduce target coverage by 3 to 8 %)
- Predator IOT&E Test Plan should include realistic threshold for target area presence
- Threshold should be associated with a specific range to target area
- Maintenance concept should be defined
- Manner in which weather-affected missions are to be scored should be explicitly stated

STRATEGIC SEALIFT

(M&S IN DESIGN)

STRATEGIC SEALIFT RATE MODEL REQUIREMENT

- THE MATERIAL DEVELOPER NEEDED TO ACCOMPLISH THE FOLLOWING TASKS IN SUPPORT OF THE STRATEGIC SEALIFT ACQUISITION PROGRAM:
 - EVALUATE THE CARGO LOADING CAPABILITY OF PROPOSED RO/ RO SHIP DESIGNS FOR NEW CONSTRUCTION AND THE CONVERSION OF EXISTING SHIPS;
 - ESTIMATE THE LOAD PERFORMANCE (LOADING RATE IN PIECES AND SQUARE FEET PER HOUR) OF THE STRATEGIC SEALIFT SHIPS USING OPERATIONAL LOADING CRITERIA; AND
 - EVALUATE THE ABILITY OF THE DESIGNS TO MEET THE 96 HOUR ON-LOAD/OFF-LOAD REQUIREMENT ESTABLISHED BY THE STRATEGIC SEALIFT OPERATIONAL REQUIREMENTS DOCUMENT (ORD).

STRATEGIC SEALIFT RATE MODEL

STRATEGIC SEALIFT CARGO LOADOUT

Typical Roll-On/Roll-Off (RO/RO) Stowage Schematic

STRATEGIC SEALIFT SHIP DESIGN AND LOADING CHARACTERISTICS

STRATEGIC SEALIFT RATE MODEL

- THE RATE MODEL HAS BEEN USED AS:
 - A TOOL FOR THE SHIP DESIGNERS
 - AN AID FOR DEVELOPMENTAL TESTERS
- VV&A UNDERWAY AT NAVY OTA:
 - POSSIBLE OT ASSESMENT/EVALUATION TOOL
- IF VV&A SUCESSFUL, PLANNING TOOL FOR CINCs:
 - STOW PLANNING
 - REQUIRED LOADING RESOURCES IN THEATER
 - OFFLOAD TIME IN THEATER

C-17 AIRLIFT AIRCRAFT

Modeling in Design and

Development of Tactics

Background & Motivation

USA Strategic Brigade Airdrop Mission

- Rapid delivery of paratroops and heavy equipment to a distant conflict
- Mission now performed by aging C-141
- C-17 designed to replace C-141

Deficiencies discovered in C-17 <u>IOT&E</u>

- Paratrooper entanglement/interference
- Paratrooper interactions with wake vortex

ADM: #1 Priority in FOT&E

- Flowfield turbulence and convergence behind C-17 increase entanglement risk
 - Limit airdrop options and configurations
 - Not identified in wind tunnel
- Wake vortices upset/collapse parachute
 - Vortices dictate new airdrop formations
 - Within- and between-element spacings
 - Initially inadequate data and models

Turbulent & Convergent Air

Turbulent air under C-17 T-tail

- Precluded static line drops from ramp
- Caused D-bags to hit some jumpers
- Static lines lengthened from 15 to 20 feet

Convergent airflow behind C-17

- Wide body displaces more air than C-141
- Airspeed reduced, flap setting changed, deck angle increased: fewer entanglements

Wake Vortices

- C-17 paratroopers at risk with standard formation spacing (a la C-141)
- Strength & persistence of C-17 vortices not considered in IOT&E
- No vortex measurements during IOT&E
- LIDAR data collected between end of IOT&E and start of FOT&E
- Wright Labs had "only model in town"

Formation Airdrop Evolved

- AMC standard rejected in IOT&E
- 3 distinct within-element and 3 distinct between-element spacings in FOT&E
- Iterative comparison of Wright Labs simulation output with actual airdrops
 - Mannequins first, then live paratroopers
 - Built from single C-17 to 6-ship airdrop

Rev #3. C-17 Formation Geometry

Simulations Still Evolving

- Theory without data at the outset
- Computer simulation at Wright Labs
 - Strength and persistence "guesstimates"
 - Parachute trajectories not realistic
- LIDAR measurements yield some data
- Enhanced simulation started at AFIT
 - "Slices" of the vortex tubes modeled
 - USA help with parachute trajectories

Current Status

- Interim intra-element and inter-element airdrop formation and flight parameters
 - Brigade airdrop timing issue unresolved
 - Station Keeping Equipment needs upgrade
- Work on AFIT simulation continues
 - Visualization being added
 - Risk analyses of alternatives possible

JANUS: USING A MODEL THAT EXISTS TO Analyze OT&E

Anticipated ITAS Benefits

Improvements over existing TOW 2

- Target detection and recognition at longer ranges
- Reduced target acquisition time
- Greater Probability of Hit
- Improved Reliability,
 Availability and
 Maintainability
- Laser Range Finder

Bottom Line

 Improved force effectiveness with units equipped with ITAS.

Use of Janus to Extend Operational Test Results

- Objective
 - Determine the feasibility of using available simulations in conjunction with OT data to investigate operational effectiveness in a force-on-force scenario
- Improved Target Acquisition System (ITAS) selected for pilot study
 - OT data (LUT) was available
 - » Detection trials only
 - » No force-on-force phase
 - Potential applicability of results to other programs that utilize second generation thermal viewers
- ITAS provides improved target detection and recognition at longer ranges over existing TOW 2

Methodology

Janus simulations

- Developed scenarios (mission, terrain, forces)
- Modified Janus detection algorithm to reflect ITAS LUT data
- Replicated battles, collected and analyzed data

Analysis Plan

- Side-by-side comparison
 - » Baseline: TOW Janus Standard Detection Model
 - » Case 1: TOW LUT Detection Model
 - » Case 2: ITAS LUT Detection Model
- Issue: Is the force effectiveness of an ITAS-equipped force improved over a TOW-equipped force?
- Scenario designed to allow ITAS to demonstrate advantages
 - » Night
 - » Long range field of fire

The Scenario

- Modified US Army High Resolution Scenario 29.
- Designed to allow ITAS to demonstrate advantages
 - Night
 - Long range field of fire
- Other Scenario Features
 - No Smoke
 - No Blue Armor, Helicopters or Artillery Support

Order of Battle for Pilot Study Scenario

U.S. Light Infantry Company		OPFOR Armored Battalion	
No.	System	No.	System
6	M-60 Machine Gun	31	T72
18	SAW	11	BMP-2
6	Dragon	5	BTR-60
2	60mm Mortar	_	_
105	Rifleman	_	_

Model Results

Relative Distribution of Identifications by Range

Janus Results for ITAS

- It was feasibile to use computer simulations to extend test results to make limited conclusions about force effectiveness
 - ITAS better able to detect targets at long range, but not able to convert detections into kills
 - Higher probability of hit at longer range can help ITAS take advantage of improved detection capability
- Feasibility of using Janus to extend test results demonstrated
 - Relatively easy to use
 - But, must pre-plan to meet typical timeline to support test approval or B-LRIP decisions

Future Plans

- Bradley IOT&E
- FOTT

EXAMPLES

Predator (requirements refinement)

Sealift (design)

C-17 (design, TTPs)

Janus (test planning)

- Establish evaluation strategy early enough to refine requirements; contractors have a right to know how the system will be evaluated
- Use backwards planning from the IOTE
- Determine M&S deliverables; RFP requirements
- Complementary models, simulations, tests
- Early applications
- Expanding the envelope
- Long-term perspective, not just the next milestone
- Develop for reuse and multiple use
- Constantly improve models

STRATEGY DEVELOPMENT (con't)

- Program funds
- Refine mod/sim/test rationale
- Demonstrate success in early phases
- Ensure continual feedback
- Articulate insights
- Involve trainers
- Sustainment, integration considerations

EXPECTATIONS

- Earlier involvement
- IPTs
- TEMPS that pay close attention to M&S, especially highly predictive ones
- CAD/CAM to vulnerability model links
- OT&E events planned with model runs
- Predict OT&E results via M&S
- Continuously improve models with test results
- Understanding: Insight not Oversight
- Budgets for M&S

THE FIRST STEPS

- Develop an M&S master plan
- Decide what you'll try to model and simulate
- Talk to the T&E folks while you do it
- Budget for it

CONCLUSIONS

- We have great support
- Expectations have never been higher
- Success requires new investment in M&S
- □M&S and testing are mutually supportive
- Leniwireini ens gnitest bons && Mu